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The early phase of high-speed liquid droplet impact on a rigid wall is characterized by
compressibility effects through the creation of a shock wave attached to the contact
area periphery. Initially, the area of compressed liquid is assumed to be bounded by
the shock envelope, which propagates both laterally and upwardly into the bulk of
the liquid. In this paper, an analytical model accounting for the lateral liquid motion
in the compressed area is developed and compared to the axisymmetric numerical
solution of the inviscid (Euler) flow equations. It is shown that the often employed
assumption that the compressed area is separated from the liquid bulk by a single
shock wave attached to the contact line breaks down and results in an anomaly. This
anomaly emerges prior to the time when the shock wave departs from the contact
line, initiating lateral liquid jetting. In order to remove this anomaly, the analytical
model presented in this paper proposes the transition from a single to a multiple
wave structure in the contact line region, prior to jetting eruption. The occurrence of
this more complex multiple wave structure is also supported by the numerical results.

1. Introduction
The fluid mechanics of liquid droplet impact on surfaces is of importance to a

variety of technological applications such as thermal spray coating, spray cooling,
cleaning of surfaces, processing and cutting of materials and ink-jet printing. It is
also of fundamental interest, since it involves more general physical phenomena,
such as the interaction of shock and expansion waves with each other and with a
free surface, as well as jetting eruption. The fluid flow associated with high-speed
impinging droplets is rather complicated and still not fully understood (Rein 1993).

During the first stage of droplet impact, the shock wave remains attached to the
contact line, as depicted in figure 1(a). An analytical study in the acoustic limit, where
the shock velocity was assumed to be equal to the ambient liquid speed of sound, has
been developed by Lesser (1981). Figure 1(b) shows the construction of the shock front
as an envelope of all individual wavelets emitted by the expanding contact line. For
high impact velocities (a water droplet of diameter 200 µm and velocity of 500 m s−1
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Figure 1. (a) Droplet impact and creation of the shock wave. (b) Construction of the
shock front as the envelope of individual wavelets emitted by the expanding contact line.
(c) Propagation of the shock front: shock wave overtakes the contact line and the jetting
commences.

is used as a numerical example throughout this study), the shock speed will be
significantly higher than the speed of sound, as shown in Haller et al. (2002).

The ‘jetting time’ is defined as the time when the liquid medium breaks (spalls)
through the droplet free surface at the contact line, figure 1(c). From a theoretical
consideration, this can be expected to occur when the contact line velocity becomes
equal to the shock velocity at the contact line. It is well-known that the time
characterizing the onset of jetting, obtained by theoretical considerations, is lower
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than observed in experiments, see Lesser & Field (1974, 1983), Field, Lesser & Dear
(1985) and Field, Dear & Ogren (1989). In this last paper, a speculative explanation of
a possible delay of experimental jetting observation is discussed. The major objective
of the present work is to investigate the conditions in the contact line region prior to
jetting eruption. The issue of jetting eruption and propagation of shock and expansion
waves beyond the moment of jetting initiation has been addressed by Haller et al.
(2002).

In this study, the Reynolds number, Re = ρ0RV/ν, is of the order of 50 000. The
symbol ν represents the kinematic viscosity of water. This high Re value implies
inertia-dominated phenomena and supports an inviscid approach to the problem. A
similar comment is valid regarding the importance of surface tension to the impact
process. The Weber number (We= ρRV 2/σ , where σ is the surface tension coefficient)
is estimated to be of the order of 350 000, justifying the assumption that surface tension
effect can be neglected. The moment of the shock detachment at the contact line, as
well as the effect of viscous forces on droplet impact, has been analysed by Korobkin
(1992) and Korobkin & Pukhnachov (1988).

2. The exact solution of droplet impact; geometrical considerations and
construction of the shock envelope

The position and radial velocity of the contact line (Al and Ul in figure 1) are
entirely geometrical features of the impact, and can be obtained by considering the
impact plane sweeping over the undisturbed drop profile. In order to find the relation
for the shock velocity we consider the wave propagation at the contact line.

We assume a spherical droplet geometry. In order to find the coordinates of the
contact line, we proceed as follows (cf. figure 1a). Since F0F1 =V t and CF0 =R, we
find

CF1 = CF0 − F0F1 = R − V t.

The x-coordinate Xl of the contact line is determined from the triangle CAlF1:

Xl = F1Al =
√

2RV t − V 2t2. (1)

A derivative with respect to time t yields the radial component of the contact line
velocity Ul ,

Ul = X
.
l =

V (R − V t)√
2RV t − V 2t2

. (2)

By the Huyghens principle, at each instant the expanding contact line will emit a
wavelet travelling with the shock speed s, figure 1(b). In Lesser (1981) this shock
velocity was regarded as constant and equal to the ambient speed of sound. As
numerically shown by Haller et al. (2002) for the case of high-velocity droplet
impact, the initial velocity of the individual wavelets is significantly higher than the
ambient speed of sound. Therefore, it must be treated as equation-of-state dependent.
Moreover, the initial shock velocity is not a constant, rather it increases as the contact
line propagates outwards.

We set time t = 0 as the time of impact. The z-component of the fluid particle
velocity in the compressed region adjacent to the propagating contact line is equal
to the wall velocity, i.e. u cosβ = V . Here, β is the angle between the shock wave
and the plane wall, as depicted in figure 1(a). The envelope of the shock front at
the contact line is constructed from the following consideration. The spherical shock
front, emitted at the time instant t , has travelled a distance sdt at the time t + dt .
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Figure 2. Geometrical construction of the shock profile attached to the contact line.

During the same time interval, the contact line moves radially by Ul dt and vertically
by V dt . The trajectory of the contact line is shown by the dashed line in figure 2 (see
also figure 1b). Each point of the shock envelope boundary in figure 2 is determined
by a tangent from the new contact line position to the circular wavelet of radius
sdt . This tangent is extended to its intersection with the wall at time t . Employing
similarity of triangles ECD and AlCB, shown in figure 2, yields

Uldt + dx

sdt
=

√
(V dt)2 + dx2

V dt
. (3)

It is convenient to introduce the velocity a as

a = dx/dt. (4)

Equation (3) reduces to

a2(s2 − V 2) − 2aUlV
2 +

(
s2 − U 2

l

)
V 2 = 0. (5)

After solving for a, we obtain the usual two solutions of a quadratic equation. Only
the solution with the positive sign before the square root has a physical meaning. It
can be easily shown that the other solution (with the negative sign before the square
root) yields a physically unacceptable value a < 0 in the limit Ul → ∞ (the initial
moment of impact, t → 0). Based on these considerations,

a =
(
UlV

2 + V s

√
U 2

l + V 2 − s2
)/

(s2 − V 2). (6)

Next, we employ the well-known consequence of the Euler equations that the liquid
particle velocity (jump) u is normal to the shock wave. The similarity of triangle
AlCB and the particle velocity triangle (depicted in figure 2) yields

u

u⊥
=

dl

dx
=

dl

adt
, (7)

where u⊥ is the component of u normal to the wall. Relation (7) can be rearranged
as

dl

dt
= a

u

u⊥
= a

u

V
. (8)
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In equation (8), we used the condition valid at the wall, u⊥ = V . Next, from the
similarity of the particle velocity triangle and triangle ECD, figure 2, it follows that

dl

V dt
=

Uldt + dx

sdt
, (9)

which can be rewritten as
dl

dt
= V

Ul + a

s
. (10)

The left-hand sides of equations (8) and (10) are equal, thus

a
u

V
= V

Ul + a

s
. (11)

Solving for the particle velocity u yields

u(s) =
V 2

s

(
1 +

Ul

a

)
. (12)

Finally, after substitution of velocity a from (6) into (12)

u(s) = V

(
s +V

√
1 − s2 − V 2

U 2
l

)/(
V + s

√
1 − s2 − V 2

U 2
l

)
. (13)

If solved for the contact line velocity, equation (13) simplifies to

Ul(s) = ± su(s) − V 2√
u(s)2 − V 2

. (14)

For a given value of the contact line velocity Ul , equation (14) contains two unknown
variables, namely, s and u. An additional piece of information for the relation between
s and u is needed to decide which of the two roots in (14) is meaningful. This is the
topic of the next section.

3. The propagation of the shock wave
3.1. Analytical solution

The relation between the shock velocity s and the liquid particle velocity u, can be
derived from the equation of state when satisfying the Rankine–Hugoniot relations.
The locus of possible final states due to the shock compression for a fluid initially
at normal density and pressure and zero mass velocity is termed as the principal
Hugoniot. For most fluids, it can be expressed over a considerable pressure range by
a simple linear relationship (see Heymann 1969 and Lesser & Field 1983):

s = s0 + ku. (15)

The symbol s0 does not always correspond to the speed of sound under ambient
conditions. In this study, we apply the fit data s0 = 1647 m s−1 and k =1.921 (Cocchi
& Saurel 1997).

The linear Hugoniot equation (15) is combined with (14) to eliminate the particle
velocity u:

Ul = ± s(s − s0) − kV 2√
(s − s0)2 − k2V 2

. (16)



6 K. K. Haller, D. Poulikakos, Y. Ventikos and P. Monkewitz

5.0

4.0

3.0

5 10 15

Ul (km s–1)

A (Ul = 3.68, s = 3.18)

s 
(k

m
 s

–1
)

Figure 3. Shock velocity vs. contact line velocity for the linear Hugoniot fit.

The physically acceptable solution in our coordinate system is the one which yields a
positive contact line velocity. This is determined as follows. The total particle velocity
u is higher than the wall velocity,

u = |V ẑ + ur r̂ | >V. (17)

From equation (15) it follows that

s − s0 = ku > kV. (18)

By making use of (18) we investigate the sign of the numerator in equation (16),

s(s − s0) − kV 2 > kV (s − V ) > 0. (19)

The last inequality holds because s >u >V , which follows in a straightforward manner
from the above. Therefore, the physically acceptable solution for Ul is the one with
the positive sign (plotted in figure 3),

Ul =
s(s − s0) − kV 2√
(s − s0)2 − k2V 2

. (20)

3.2. Radial particle velocity

In order to find the corresponding particle velocity, we eliminate s from (20) by
employing equation (15):

Ul =
(s0 + ku)u − V 2

√
u2 − V 2

. (21)

In terms of the radial component of the particle velocity, ur =
√

u2 − V 2,

Ul = kur + s0

√
1 +

(
V

ur

)2

+ (k − 1)
V 2

ur

. (22)

The solution of equation (22) for ur (t) is shown in figure 4 (the one-to-one mapping
between Ul and t is given by (2)). This theoretical result is in agreement with
computational results for the axisymmetric compressible Euler equations by Haller
et al. (2002).

3.3. Emergence of anomaly

Figure 3 shows that after impact (far right) the contact line velocity decreases rapidly
from a theoretically infinite value at t = 0 whereas the shock velocity remains almost
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Figure 4. Prediction for the radial particle velocity and comparison with
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constant. Later, (e.g. beyond Ul = 7.5 km s−1) the shock velocity starts to grow, due
to the development of lateral flow. However, after point A, where the tangent to
the curve is parallel to the s-axis, the contact line velocity starts to increase again.
This is a physically unacceptable situation and the solution branch above point A
must be rejected. We conclude that there is a time after which no physical solution
based on the assumed physics of a single shock wave attached to the contact line
exists. The time corresponding to the point A will be termed as the ‘time of shock
degeneration’, tdeg.

The jetting eruption in the contact line region, if it occurred before tdeg, would be
the explanation of this anomaly. To address this issue, a closer look at the shock and
contact line velocity corresponding to tdeg is needed. The maximum shock wave speed
of the limit point A in figure 3 can be calculated from the condition

∂Ul

∂s
= 0, (23)

smax = s0 +V

(
2k − 1

3β
α1/3 +

βk

α1/3

)
, (24)

where the parameters α and β are defined as

α =
2kV

s0

, β =

(
1 +

√
1 − α2

(
2k − 1

3k

)3)1/3

. (25)

For the case of a linear fit for water, smax = 3.184 km s−1. At the same time, the contact
line velocity has decreased to Ul,min =3.678 km s−1 (corresponding to the time tdeg =
1.82 ns). Obviously, Ul,min > s, hence, the jetting cannot be initiated at this time.

The interesting issue arising at this point is what happens to the shock envelope
evolution in the time interval between tdeg and tjet (for the numerical example of water
used here, this is the interval [1.82 ns, 2.80 ns]). Due to the above-mentioned anomaly,
the assumed single shock wave structure appears not to capture the physics correctly.
We postulate the appearance of a double shock wave structure in this time interval,
figure 5, which will remove the physically unacceptable portion of the earlier solution
and lead to lateral jetting.
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4. Solution of the anomaly
Additional insight into this anomaly is obtained by consideration of the process

of solution construction in the contact line region, figure 5. The real flow state (u, s)
is obtained as the intersection of the ‘edge boundary condition’ (henceforth referred
to as ‘edge b.c.’) curves (14) and the linear Hugoniot fit (15). All edge b.c. curves
originate from the same point (V, 0), and rise sharply to a plateau value. The rise
is less sharp as time increases. At each time instance, the linear Hugoniot fit and
corresponding edge b.c. curve intersect at two points. However only the left point is
physically acceptable, based on the following consideration. At time t = 0 the curves
intersect at u =0.5 (point P in figure 5) and u → ∞ . The first solution is the one we
expect (no lateral flow, thus liquid velocity equal to the wall velocity). The solution
u → ∞ is physically not acceptable. Since the curve u = u(t) must be continuous (no
instantaneous acceleration of particles), all physically allowed solutions will travel
from P to Q, figure 5.

Apparently, beyond t =1.82 ns (marked with point Q in figure 5), no intersection
exists. This is a different manifestation of the anomaly mentioned earlier. To explore
this anomaly, we have to rethink the construction of the edge b.c. curves, since the
linear Hugoniot has an overall validity (playing here the role of an equation of state).
It is logical to assume that a somewhat more complex wave structure occurs and
investigate its possible effect on the edge boundary curves.

Here, we consider a double wave structure, where the outer wave is assumed to
be a shock wave, as outlined in figure 6. The liquid particle velocity in the region
between the waves is still normal to the outer shock wave; however, the difference to
the previous model (see equation (8)) is that it has a normal component u⊥ smaller
than the wall velocity V . Therefore we rewrite (8) as

dl

dt
= a

u

u⊥
= a

u

λV
, (26)

where we define the factor

λ= u⊥/V � 1. (27)

Implementing this concept in the solution process, equation (12) becomes

u(s) = λ
V 2

s

(
1 +

Ul

a

)
. (28)
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Combining with equation (6) to eliminate a yields

u(s) = λV

(
s + V

√
1 − s2 − V 2

U 2
l

)/(
V + s

√
1 − s2 − V 2

U 2
l

)
. (29)

Solving for the contact line velocity and recalling (15), equation (29) becomes

Ul(s) =
s(s − s0) − λkV 2

k
√

u(s)2 − λ2V 2
. (30)

The influence of the factor λ< 1 on the edge b.c. curves can be easily seen in
equation (29). For the same value of s and Ul (corresponding to time t), the liquid
velocity u will decrease with increasing λ. The curves in figure 7 clearly demonstrate the
fact that in this scenario the domain of physically acceptable solutions is extended.
For our example of a water droplet, the value of λ= 0.65 extends the range of
acceptable solution up to t = 2.80 ns. This value coincides with the jetting time (for

which
√

U 2
l +V 2 = s), thus removing the anomaly mentioned earlier.

Before closing this section, it is worth mentioning that a multiple wave structure
(instead of only double) is also possible, since we have not made any assumption
on the inner wave structure, which can be composed of different waves. Experiments
(obviously very difficult to carry out) could define the exact wave structure present.
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Nevertheless, the proposed mechanism appears to offer a good explanation for the
anomaly resulting from the single shock wave structure.

An equivalent argument could be also applied to the curve shown in figure 3, which
would shift the point A together with the entire curve and extend the solution domain.
However, the disadvantage of this approach would be that a specific function λ= λ(t)
(loss in generality), needs to be assumed.

5. Numerical confirmation
The proposed multiple wave structure, which allows the analytical treatment of

the anomaly, was also numerically confirmed with the computational methodology
outlined in Haller et al. (2002). No details are given here for brevity. The computations
performed show the presence of the single shock wave up to the time of shock
degeneration and subsequent gradual formation of a more complex wave structure in
the contact line region.

The formation of the degenerated wave structure in terms of a numerically obtained
pressure plot in the radial direction in the contact line area is examined in figure 8(a),
showing clearly the breakup of the single shock wave after approximately t =1.5 ns.
Figure 8(a) clearly supports the double wave structure because it shows the pressure
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distribution on the wall (at z =0) in the vicinity of the contact line and demonstrates
that after some time a double wave structure occurs there (notice the distinctly
different shape of the pressure distributions in this figure after the maximum pressure
in each profile, for times greater than 1.924 ns).

The plots in figure 8(b) show the velocity field together with equidistant iso-density
lines, confirming the assumption of lower velocity in the intermediate region, λ< 1.
The narrow packing of equidistant iso-density lines indicate that the outer wave 2
is a shock wave (localized jump), with respect to which the particle velocity field is
apparently normal. The factor λ, (27), with the numerically determined values in the
region downstream of the shock wave was found to be 0.7.

A comment is also worthwhile regarding experimental confirmation of the
mentioned multiple wave structure. To this end, the shock structure discussed in
this work is outside the resolution capabilities of experimental techniques. Moreover,
typical droplets used in experiments (Lesser & Field 1983; Field et al. 1989; Lesser
2002), are much bigger (droplet radii were 1–10 mm, i.e. 10–100 times bigger than in
our simulation), which means also that the jetting times are much higher (since the
contact line velocity as a function of time is also higher than for the smaller droplets,
see Haller et al. 2002). Thus, a direct comparison with the configurations examined
in our work is not easy to make.

6. Construction of the shock envelope
Based on the solution constructed above for the shock velocity, we develop an

analytical representation for the shock envelope. This will be used to validate the
shock–velocity model against numerical results obtained by Haller et al. (2002), since
the shock velocity itself cannot be directly obtained from computations. The predicted
shock velocity is evidently higher than the speed of sound, thus it is also expected that
the shock envelope will differ substantially from the corresponding envelope in the
acoustic limit, developed by Lesser (1981). We shall investigate the extent to which
these two models differ and their agreement with computational results. The details
of the numerical simulations can be found in Haller et al. (2002).

The procedure presented is a generalization of the acoustic approach by Lesser
(1981) and regards the shock velocity as a solution of the Euler equations, therefore
it can be used with an arbitrary equation of state.

We consider a contact line propagating to the right with the known radial velocity,
X
.
l . The coordinate system is shown in figure 9(a). The time coordinate is set to t =0

at the instant of impact. In our reference frame, the impact of a rigid wall with a
perfect sphere of motionless liquid is investigated.

The contact line emits at τ � 0 a circular wavelet spreading with the initial velocity
s(τ ), (figure 9a). The radius of the circular wave front at time t is

d(t, τ ) =

∫ t

τ

s(ν) dν. (31)

Let the coordinates of the spherical wave front at time t be (r, z) and those of the
contact line at time τ , when the wave was emitted, (Xl(τ ), V τ ). The equation of
wavelets at time t in the (r, z)-plane will be

Φ(r, z, τ ) = (r(t) − Xl(τ ))2 + (z(t) − V τ )2 − d2(t, τ ) = 0. (32)

It is worth stressing that at each point on the constructed wave envelope only a
single wavelet plays a role, hence this procedure does not employ any superposition of
spatially overlapping wavelets (see also Lesser 1981). The velocity of these Huygens
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Figure 9. (a) Envelope construction: wall position at the time τ shown by a dashed line.
Contact line propagates along the droplet free surface. (b) Comparison of analytical results
with the computational findings.

wavelets is defined as the (highest) velocity at which the information (perturbation)
travels into the undisturbed liquid, which is the shock speed. Next, we proceed with
the construction of the wave front at specific time t, t � τ , which we treat as a
constant hereafter. To construct the envelope of the emitted wavelets (equation (32)),
we project the surface Φ(r, z, τ ) = 0 onto the (r, z)-plane (represented by the vector
(0, 0, 1)) and require

∇Φ(r, z, τ ) · (0, 0, 1) =
∂

∂τ
Φ(r, z, τ ) = 0. (33)

Insertion of (32) into (33) yields

X
.
l(τ )(r − Xl(τ )) + V (z − V τ ) + d(τ ) d

.
(τ ) = 0. (34)

From (31) it follows that

d
.
(τ ) = −s(τ ). (35)

The physically meaningful solution of the system of equations (34) and (32), taking
into account (35) is given in parametric form as

r(τ ) = Xl + d
.
(τ )

d
.
(τ )X

.
l(τ ) − V

√
X
.
2
l (τ ) + V 2 − s2(τ )

X
.
2
l (τ ) + V 2

, (36)

z(τ ) = V τ + d(τ )
− d

.
(τ )V + X

.
l(τ )

√
X
.
2
l (τ ) + V 2 − s2(τ )

X
.
2
l (τ ) + V 2

. (37)
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The exact envelope functions (equations (36) and (37)) can be simplified by making
use of the fact that during the first phase of the impact, the impact velocity V is
much smaller than the contact line velocity Ul = X

.
l ,

V/X
.
l � 1. (38)

After implementation of (38) in (36) and (37),

r(τ ) ≈ Xl(τ ) − d(τ )
s(τ )

Ul(τ )
, (39)

z(τ ) ≈ V τ − d(τ )

√
1 − s2(τ )

Ul(τ )
. (40)

Equations (39) and (40) are the parametric representation r = r(τ ), z = z(τ ) of the
shock envelope for small times t .

Up to this point, the approach is general and special solutions will depend on
the function s(τ ). The acoustic model (Lesser 1981) is a special case of the system
(39)–(40) in the limit s(τ ) = c.

The exact function s(τ ) can be obtained by equation (20). However, since this
function is almost linear in the first impact phase (graph not included here for
brevity), we approximate it with

s(τ ) = s0 + ετ. (41)

The value s0 represents the initial shock velocity. Both s0 and the coefficient ε can be
obtained by the linearization of (20).

The radius d(τ ) of the singular wavelet emitted at time τ , (31), is now

d(τ ) =

∫ t

τ

(s0 + εν) dν = s0(t − τ ) +
ε

2
(t − τ )2 (42)

Equations (41) and (42), when substituted into the system (39)–(40) yield the desired
shock envelope in a parametric representation.

The comparison of the wave envelopes is shown in figure 9(b). The numerically
captured shock position is contained within the two thick dashed lines. For the
impact of a water droplet of 200 µm in diameter with the velocity V =500 m s−1, the
linearization factor in equation (41) is ε = 1.5 × 1011 m s−2. In the vicinity of the contact
line region, the envelope developed matches the computational results well. The
acoustic model, depicted by a thin dashed line, underpredicts the numerical findings,
due to the underestimated envelope velocity in that model. Far from the contact
line (near the z-axis), the computational envelope runs slightly below the position
predicted by our model. This can be attributed to the temporal decay of the shock
velocity, which is not included in the current model. Close to the contact line, this
decay is negligible.

7. Conclusions
A model capable of predicting the liquid particle velocity and the shock speed in the

compressed region of high-speed droplet impact on a solid surface is developed. The
problem is resolved by taking into account the real equation of state. The analytical
predictions of the model are in good agreement with computational results obtained
by Haller et al. (2002). In the discussion of the first stage of droplet impact, it has been
proven that the assumption of a single shock wave structure leads to the occurrence
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of an anomaly in a contact line region. The present analysis shows that the anomaly
does not emerge if a single-shock structure is not presupposed and more complex
wave patterns are allowed. The assumption of multiple wave structure is validated
by numerical results, showing the breakdown of the single-shock-wave assumption
after the time of shock degeneration. The shock envelope generated upon impact is
constructed and validated, showing good agreement with numerical findings.
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